I'm a big fan of the Renal Fellow Network but one of the consequences of the Post-Nate structure, with a large cohort of authors is variable quality. One of the new horses is a first year fellow at Stanford, Graham Abra. He is doing a great job. Take a look at the work he has done this year. Great stuff. His post on alimentary azotemia is about as good a post as I have ever read on RFN. I can't wait for him to finish his work on Kt/V.
Keep on writing Graham, you're hitting it hard.
Monday, February 28, 2011
Creatinine, BUN and GFR: part two
Part one focussed on the fact that with a stable creatinine the amount of creatinine produced is equivalent to the amount of creatinine excreted in the urine. Then it showed how the general clearance formula can be rearranged to solve for the serum creatinine rather than the GFR.
The interesting concept, and the original question, is why does the creatinine rise when the GFR falls. Looking at the clearance formula if we decrease the GFR to 45 mL/min and keep the creatinine excretion fixed at 1,400 mg per day, the only way to balance the equation is to increase the serum creatinine.
The only way for the kidney to excrete the daily creatinine load is to allow the creatinine to rise. The increase in serum creatinine allows the kidney to clear the daily creatinine load.
But this doesn't really answer why the creatinine rises with a falling GFR. The secret comes from the efficiency of ultrafiltration as the source of clearance. Excluding secretion in other parts of the nephron clearance is provided by filtration at the glomerulus.
Substances filtered at the glomerulus are found in the ultrafiltrate at the same concentrations they are found in the plasma. So a liter of ultrafiltrate will have 140 mEq of sodium and 4 mEq of potassium. These examples should make it clear that ultrafiltration is much more efficient for excreting substances found at high concentration. Americans consume about 180 mmol of sodium a day (4140 mg), this can be cleared with less than 1.5 liters of ultrafiltration. Potassium intake is around 50 mmol per day, clearing this much potassium requires 12 liters of ultrafiltrate. Note: sodium and potassium handling do not depend on ultrafiltration because of extensive reabsorption and secretion that largely overwhelm the effect of ultrafiltration.
Let's look at the patient at steady state with, 1,400 mg of creatinine production, a GFR of 100 and a creatinine of 0.97. He suddenly loses half his renal function and now has a GFR of only 50 mL/min. Looking at the clearance formula, the only things that changes at first is the GFR. For the first moments after the loss of GFR the serum Cr will still be 0.97. We can solve for amount of creatinine excreted by the kidney at the GFR:
So with a GFR of 50 and a serum creatinine of 0.97, only 698mg, or just under half, of the creatinine created is excreted by the kidneys. It is impossible for the kidneys to clear the daily creatinine load with a GFR of 50 and a serum Cr of 0.97. The 702 mg of creatinine that are not excreted, remain behind and serves to increase the serum the creatinine. If the patient has 60% body water, his total body creatinine initially was 407 mg of creatinine (0.97 mg/dl x 420 dL body water) and the additional retained creatinine will raise his serum creatinine to 2.6 (407mg + 702mg divided by the same 420 dL).
The next day, armed with the higher serum creatinine of 2.6, the same GFR allows the body excrete 1,929 mg of creatinine, more than the daily creatinine load. The resulting creatinine is then 1.4 mg/dl. Ultimately if you carry this calculation forward the creatinine will stabilize at 2.16 mg/dl.
Understanding the equations and calculations is not as important as understanding that higher serum creatinines allow more creatinine to be cleared by ultrafiltration, in fact the only way for the kidney to excrete the same daily creatinine load at lower GFRs is by allowing the serum creatinine to rise.
Think of a rising creatinine as not so much a complication of renal failure but as an adaptation to renal failure.
The interesting concept, and the original question, is why does the creatinine rise when the GFR falls. Looking at the clearance formula if we decrease the GFR to 45 mL/min and keep the creatinine excretion fixed at 1,400 mg per day, the only way to balance the equation is to increase the serum creatinine.
In summary we have an equation with three variables:
- Clearance is the independent variable, and we are setting it at 45 ml/min
- Creatinine excreted is fixed at 70 mg/kg or 1,400 mg
- Serum creatinine
So if the GFR falls the only variable that can respond is the serum creatinine and in the above example it rises to 2.1 (remember to multiply the calculation by 100 to convert from mg/ml to mg/dL).
The only way for the kidney to excrete the daily creatinine load is to allow the creatinine to rise. The increase in serum creatinine allows the kidney to clear the daily creatinine load.
But this doesn't really answer why the creatinine rises with a falling GFR. The secret comes from the efficiency of ultrafiltration as the source of clearance. Excluding secretion in other parts of the nephron clearance is provided by filtration at the glomerulus.
Substances filtered at the glomerulus are found in the ultrafiltrate at the same concentrations they are found in the plasma. So a liter of ultrafiltrate will have 140 mEq of sodium and 4 mEq of potassium. These examples should make it clear that ultrafiltration is much more efficient for excreting substances found at high concentration. Americans consume about 180 mmol of sodium a day (4140 mg), this can be cleared with less than 1.5 liters of ultrafiltration. Potassium intake is around 50 mmol per day, clearing this much potassium requires 12 liters of ultrafiltrate. Note: sodium and potassium handling do not depend on ultrafiltration because of extensive reabsorption and secretion that largely overwhelm the effect of ultrafiltration.
Let's look at the patient at steady state with, 1,400 mg of creatinine production, a GFR of 100 and a creatinine of 0.97. He suddenly loses half his renal function and now has a GFR of only 50 mL/min. Looking at the clearance formula, the only things that changes at first is the GFR. For the first moments after the loss of GFR the serum Cr will still be 0.97. We can solve for amount of creatinine excreted by the kidney at the GFR:
So with a GFR of 50 and a serum creatinine of 0.97, only 698mg, or just under half, of the creatinine created is excreted by the kidneys. It is impossible for the kidneys to clear the daily creatinine load with a GFR of 50 and a serum Cr of 0.97. The 702 mg of creatinine that are not excreted, remain behind and serves to increase the serum the creatinine. If the patient has 60% body water, his total body creatinine initially was 407 mg of creatinine (0.97 mg/dl x 420 dL body water) and the additional retained creatinine will raise his serum creatinine to 2.6 (407mg + 702mg divided by the same 420 dL).
The next day, armed with the higher serum creatinine of 2.6, the same GFR allows the body excrete 1,929 mg of creatinine, more than the daily creatinine load. The resulting creatinine is then 1.4 mg/dl. Ultimately if you carry this calculation forward the creatinine will stabilize at 2.16 mg/dl.
Understanding the equations and calculations is not as important as understanding that higher serum creatinines allow more creatinine to be cleared by ultrafiltration, in fact the only way for the kidney to excrete the same daily creatinine load at lower GFRs is by allowing the serum creatinine to rise.
Think of a rising creatinine as not so much a complication of renal failure but as an adaptation to renal failure.
Labels:
clearance,
Creatinine,
GFR
Friday, February 18, 2011
From the department of holy shit: Wrong patient, wrong kidney
Kidney transplant error: Wrong patient got kidney at USC University Hospital - latimes.com
Come on guys. At least pretend you'e trying to be competent.
Come on guys. At least pretend you'e trying to be competent.
Thursday, February 17, 2011
Remember Nate Hellman
Nate started the most important innovation in nephrology education since NephSAP, the Renal Fellow Network. Nate died, tragically, a year ago this past Sunday. We all stand on the shoulders of giants and Nate passed long before his work was done. In addition to thinking of Nate, we should also thank Matt Sparks and Conall O' Seaghdha for picking up the pieces and transforming RFN from what was largely a one man show into the institution it has become.
Creatinine, BUN and GFR: part one
Question: What is the most basic concept in clinical nephrology?
For the purpose of this post the renal function is synonymous with glomerular filtration rate.
Think about every lab measurment in clinical medicine and think about how the normal range changes as the GFR falls from 100 mL/min to 10 mL/min, a 90% reduction of renal function.
You can use this spreadsheet below to predict the serum creatinine based on different GFRs, urine volumes and creatinine production. Try different urine volumes and see how that doesn't affect the serum creatinine (the reason is that the numerator in the clearance formula is simply solving for the mass of creatinine excreted. Concentration of X multiplied by the volume gives amount of X dissolved in the solution.) . Use the spreadsheet to discover what Shaquile O'Neal's serum creatinine is. Assume 20 mg/kg body weight, a weight of 147 kg, and a GFR of 120.
If you want to edit and use the equation image files download this Word file. Double click the equations to launch the equation editor.
Answer: As renal function falls, the creatinine and BUN rise.
Think about every lab measurment in clinical medicine and think about how the normal range changes as the GFR falls from 100 mL/min to 10 mL/min, a 90% reduction of renal function.
- How much does sodium change?
- Not at all.
- How much does potassium change?
- In the absence of ACEi or other drugs which alter normal renal handling or an extreme change in diet, it doesn't change at all.
- Phosphorous?
- Maybe a 25% bump from the low 4s to the mid 5s.
- White blood cell count?
- Not at all.
- Albumin?
- Not at all.
- Lipase?
- Not at all.
- SGPT?
- Not at all.
In the broad world of clinically relevant biochemical tests, essentially none are readily affected by changes in glomerular filtration rate. BUN and creatinine (and cystatin C) stand alone in their exquisite sensitivity to changes in GFR. Of course this is not a weird coincidence, those labs are clincially relevent precisely due to their sensitivity to changes in GFR. But why is it, that as GFR falls, the creatinine rises?
Imagine a 70 kg male. Men, on average, generate 20 mg of creatinine per Kg body weight, so our patient will generate 1400 mg of creatinine and, if the renal function is stable, all of that creatinine is excreted by the kidneys every day. It makes no difference if the GFR is 10 or the GFR is 100, all of the creatinine generated is excreted.
None of it lingers.
None of it accumulates in some creatinine depot in the subcutaneous fat or lateral horn of the cerebral ventricles.
This has to be true because if some of creatinine hung around and accumulated, the serum creatinine would rise. By definition, stable renal function means the creatinine doesn't rise. So our 70 kg man generates 1,400 mg of creatinine and excretes 1,400 mg of creatinine.
None of it lingers.
None of it accumulates in some creatinine depot in the subcutaneous fat or lateral horn of the cerebral ventricles.
This has to be true because if some of creatinine hung around and accumulated, the serum creatinine would rise. By definition, stable renal function means the creatinine doesn't rise. So our 70 kg man generates 1,400 mg of creatinine and excretes 1,400 mg of creatinine.
Once you know the amount of a substance excreted we cane solve for the plasma concentration using the standard clearance formula.
Using the 1,400 mg of creatinine, assuming a modest urine output of 1 liter and assuming a GFR of 100 the equation looks like this:
We can rearrange the equation to solve for the plasma creatinine:
and if you do the calculation you get a creatinine of 0.97 mg/dL. The neat part of the equation is that it is totally independent of the urine volume. If the patient excretes the 1400 mg of creatinine in 2 liters rather than 1 as we claculated above, the urine creatinine concentration falls by half (same amount of total creatine dissolved in twice as much urine), the urine volume doubles and the serum creatinine remains the same.
On the other end of the renal function spectrum, the poor patient with a GFR of 10, looks like this:
This gives him a serum creatinine of 9.7 mg/dL. The creatinine went from 0.97 to 9.7 with a change in GFR from 100 to 10. Imagine if any other electrolyte had a ten-fold change associated with a drop in the GFR? Raise your hand if you have seen a potassium of 40.
President Bush is 5'11" |
If you want to edit and use the equation image files download this Word file. Double click the equations to launch the equation editor.
Thursday, February 10, 2011
Great site with lots of resources on hypertension
- Professionals for medical providers
- Community for church's and community organizations
- Patient for people with high blood pressure
Take a look at the Vital Signs fact sheet from the professional campus. This is from the CDC and summarizes some of the broad epidemiology of lipids and hypertension.
New Books Tab
I just added my third and last (?) tab to the blog. Books. It just has two items, The Fluid and Electrolyte Companion and the Michigan Hypertension Core Curriculum. Both are complete texts available as free PDFs. Check'em out.
Subscribe to:
Posts (Atom)